LECTURE NOTES Convexity, Duality, and Lagrange Multipliers

نویسندگان

  • Dimitri P. Bertsekas
  • Asuman E. Ozdaglar
چکیده

These notes were developed for the needs of the 6.291 class at M.I.T. (Spring 2001). They are copyright-protected, but they may be reproduced freely for noncommercial purposes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the duality of quadratic minimization problems using pseudo inverses

‎In this paper we consider the minimization of a positive semidefinite quadratic form‎, ‎having a singular corresponding matrix $H$‎. ‎We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method‎. ‎Given this approach and based on t...

متن کامل

A complete characterization of strong duality in nonconvex optimization with a single constraint

We first establish sufficient conditions ensuring strong duality for cone constrained nonconvex optimization problems under a generalized Slater-type condition. Such conditions allow us to cover situations where recent results cannot be applied. Afterwards, we provide a new complete characterization of strong duality for a problem with a single constraint: showing, in particular, that strong du...

متن کامل

Convex Optimization Overview (cnt’d)

In a convex optimization problem, x ∈ R is a vector known as the optimization variable, f : R → R is a convex function that we want to minimize, and C ⊆ R is a convex set describing the set of feasible solutions. From a computational perspective, convex optimization problems are interesting in the sense that any locally optimal solution will always be guaranteed to be globally optimal. Over the...

متن کامل

Cs229 Lecture Notes Support Vector Machines

This set of notes presents the Support Vector Machine (SVM) learning algorithm. SVMs are among the best (and many believe are indeed the best) “off-the-shelf” supervised learning algorithm. To tell the SVM story, we’ll need to first talk about margins and the idea of separating data with a large “gap.” Next, we’ll talk about the optimal margin classifier, which will lead us into a digression on...

متن کامل

Lecture 11: October 8 11.1 Primal and Dual Problems

j=1 vj`j(x). Lagrange multipliers u ∈ R, v ∈ R. Lemma 11.1 At each feasible x, f(x) = supu≥0,v L(x, u, v), and the supremum is taken iff u ≥ 0 satisfying uihi(x) = 0, i = 1, · · · ,m. Proof: At each feasible x, we have hi(x) ≤ 0 and `(x) = 0, thus L(x, u, v) = f(x) + ∑m i=1 uihi(x) + ∑r j=1 vj`j(x) ≤ f(x). The last inequality becomes equality iff uihi(x) = 0, i = 1, · · · ,m. Proposition 11.2 T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001